

Climate Services for Energy - Role of Climate Data in Power Sector

National Framework of Climate Services (NFCS) Meet, Lavasa, Pune

Technology-Automation AI Machine Learning for Growth and Sustainability

Dr. Goutam Das Consulting Data Scientist National Power Training Institute, Faridabad Ministry of Power, Govt. of India

on 5th & 6th Oct 2023 @ Lavasa, Pune

Meteorological Data - Crucial role in the Energy / Power Sector

Power Sector

- Power Planning
 - [Infrastructure: Generation, Transmission and Distribution Capacity Planning Planning: Generation, Transmission and Distribution
 - Capital Investment
 - Time to Operate and/ or Market
 - Payback period & Feasibility: Cost Benefit Analysis
- Power Generation Production Quantity
 - Raw Material Planning and Readiness
 - Manpower Planning
- **Operation & Maintenance** (incld. Power Trading*)
 - Quantity based on demand incld. Asset Management
 - Sale and Buy decision making for Generation and Distribution – DAM*, RTM*, etc. vs. PPA
 * Market price determination

Historical Data, Current Data and Predicted Data all are equally important

Harnessing the Blessing in disguise - India

- We are a diverse country Advantage of India's diversity
 - Slightly more than 2 hours -> hence it is 14 Hours [Laterally: Like Onsite Offshore Model in IT Industry]
 - Helps in arresting Sunlight for longer period and instead of storing can be transmitted to neighbouring states/ cities instead of costly storing and losing energy due to technical inefficiency

Climate Impacts on Energy Systems - Key issues for energy sector adaptation			
Sr. #	Hydro-meteorological and/or Climate Parameter	Impacts and Usages in Energy Production and Services	
1	Air temperature	Turbine production efficiency, Demand (cooling/heating), Demand simulation/modelling, solar PV panel efficiency	
2	Rainfall	Hydro-generation potential and efficiency, biomass production, demand simulation/modelling	
3	Wind speed and/or direction	Wind generation potential and efficiency, demand simulation/modelling	
4	Cloudiness	Solar generation potential, demand simulation/modelling	
5	Snowfall and ice accretion	Power line maintenance, demand simulation/modeling	
6	Humidity	Demand simulation/modeling	
7	Short-wave radiation	Solar generation potential and output, output modeling, demand simulation/modeling	
Source: World Bank ESMAP- Energy Sector Management Assistance Program			

Climate Impacts on Energy Systems - Key issues for energy sector adaptation

Sr. #	Hydro-meteorological and/or Climate Parameter	Impacts and Usages in Energy Production and Services
8	River flow	Hydro-generation and potential, hydro-generation modelling (including dam control), power station cooling water demands
9	Coastal wave height and frequency, and statistics	Wave generation potential and output, generation modeling, off-shore infrastructure protection and design
10	Sub-surface soil temperatures	Ground source generation potential and output
11	Flood statistics	Raw material production and delivery, infrastructure protection and design, cooling water demands
12	Drought statistics	Hydro-generation output, demand of energy for drought management
13	Storm statistics (includes strong winds, heavy rain, hail, lightning)	Infrastructure protection and design, demand surges
14	Sea level	Offshore Energy / Power operations
	N	

Source: World Bank ESMAP- Energy Sector Management Assistance Program

Climate Data – Usages and Importance

Load Forecasting – Distribution & Generation

- Weather conditions influence power demand patterns [Heating & Cooling Effect & Control]
- Load forecasting models, helps planning electricity demand due to temperature variations

Hydroelectric Power

- Hydroelectric power generation depends on water availability and precipitation patterns
- Data (including rainfall and snowfall forecasts) helps hydropower operators manage reservoir levels and plan generation schedule (in collaboration with other stakeholders)

Climate Data – Usages and Importance

Renewable Energy Forecasting

[expected energy output and optimize integration of variable resources into the grid]

- Essential for predicting the availability of renewable energy sources
 - Wind Power Wind Speed
 - Solar Power Solar Radiation and Temperature
- Renewable Energy Site Selection
 - Wind farms or solar installations Assessment of long-term wind speed and solar radiation patterns at potential sites
 - Viability/ Feasibility and expected energy output [Satellite Image Processing to identify barrel land and assess feasibility for Solar/ Wind installation]

Transmission Line Maintenance

- Severe weather conditions lead to damage to transmission lines / towers
- Meteorological data helps predict the events and schedule maintenance to prevent outages

Energy Trading

- Energy markets are influenced by weather patterns
- Traders/ market analysts make informed decisions for energy trading and pricing

Grid Management

- Weather conditions significantly impacts the stability and reliability of the electrical grid.
- Severe weather events e.g. storms, hurricanes, and extreme temperatures leads to power outages and grid disturbances
- Meteorological data used to anticipate these events & allow grid operators for preventive measures/ respond

Disaster Preparedness

- Essential for disaster preparedness and recovery efforts
- To develop contingency plans for extreme weather events for rapid restoration of power

Climate Data - Few Critical Impacts and Thoughts (Incld. Associated)

- Power Demand specially Peak Demand Forecasting National Level and City Level
 - Planning for Infrastructure
 - Generation and Distribution
- SMART Meter Analytics
 - Fine-tuning the planning of future infrastructure and hence investment
 - Load Balancing
 - Effectiveness of Micro-grid and Net Export/ Import
- Block Chain Trading & AT&C Loss

Climate Data - Few Critical Impacts and Thoughts (Incld. Associated)

• Power Trading

- Load Forecasting
- Power Pricing/ Market Pricing [PPA Hedging and Challenge for Consumers]
- Market Cap Price and Energy Starvation

Green Energy Transition

- Investment
- Insurance
- Green Taxonomy –

EU, China, UK, Canada, Australia, Japan, South Korea, Singapore, USA

Al and Machine Learning: Technology for Analytics and Automation **Contextual Artificial Intelligence & Machine Learning using Climate Data Explainable AI** (Trust Worthy AI **System for Mission Critical Decision** Sizable Biz value Making) **Cost Reduction Decision Making** Accuracy with with • Promptness Interpretation AI **Edge AI** AI @ Speed & Scale (Accurate with Quick (Large Biz Value or Response in Real Time & Large Scale Automation

Substantial Benefits) Disaster Man Driverless C Recognition in Sizable Biz value thru Automation Response Time

in Biz Functions &

Production for

(Accurate with Quick Response in Real Time & ault Tolerant: Near Real Fime Decision making – RTM, DAM, Grid Management, Alexa, Disaster Management, Driverless Car, Face Recognition in Mobile,) Technology – Big Data Analytics, Block Chain and Al Machine

Learning

Few Nuances and Challenges

Data Visualization – Visibility – Analysis – Prediction – Decision Making

- Power of Technology & Computing Power
 - Big Data
 - Volume of Data
 - Velocity of Data
 - Storage of Data
 - Retrieving of Data
 - Unstructured Data Image Processing
 - Block Chain Security vs Carbon Emission /Heat Generation
 - AI Machine Learning

SDG: 17 Sustainable Development Goals

For any query/ clarification or further information please contact

Dr. Goutam Das Consulting Data Scientist National Power Training Institute, Faridabad Ministry of Power, Govt. of India

Mobile: +91-9830998761

Thank You