

Next Generation Monsoon Mission Coupled Model (MMCFS-v2): Indian Summer Monsoon simulation and Prediction

Suryachandra A. Rao and Collaborators

Indian Institute of Tropical Meteorology

Pune, India

(surya@tropmet.res.in)

Geosci. Model Dev., 17, 709–729, 2024 https://doi.org/10.5194/gmd-17-709-2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License. Geoscientific

Monsoon Mission Coupled Forecast System version 2.0: model description and Indian monsoon simulations

Deepeshkumar Jain^{1,2}, Suryachandra A. Rao¹, Ramu A. Dandi¹, Prasanth A. Pillai¹, Ankur Srivastava¹, Maheswar Pradhan¹, and Kiran V. Gangadharan¹

¹Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
²NCMRWF, Ministry of Earth Sciences, A50, Noida, 201309, UP, India

Indian Institute of Tropical Meteorology, Pune

Source: Shukla, J IITM Diamond Jubilee Lecture

Model: NCEP CFS, T126 AGCM and 0.25 OGCM in tropics

Obs. and Forecast JJAS Precip. Anom., India (10-32N, 70-90E)

ENSO Prediction Skill over time in SEAS5

(Despite of strong association with ENSO)

Resolution: AGCM: 50 km, OGCM:110 km

Challenge#2: Low variability both in SST/Rainfall

Extended reconstructed sea surface temperature

Challenge #3 Overestimation of ENSO-ISMR relationship in the coupled model

Correlation coofficient	a) Observations					
between ISMR and SST indices	June	July	Aug I	Sep	JJAS	
Niño 1+2	-0.36	-0.21	0.18	-0.16	0.03	
Niño 3	-0.3	-0.45	0.01	-0.41	-0.3	
Niño 3.4	-0.23	-0.48	-0.03	-0.53	-0.42	
Niño 4	-0.2	-0.27	-0.04	-0.54	-0.35	
EMI	0.1	-0.11	-0.14	-0.43	-0.34	
IOD	0.08	0.05	0.22	-0.19	0.03	
East IOD	-0.43	-0.02	-0.3	0.15	0.08	
West IOD	-0.28	0.05	-0.04	-0.11	0.13	
			b) MMCFS			
Correlation coefficient between ISMR and SST indices	June	July	l Aug	Sep	JJAS	
Niño 1+2	-0.39	-0.7	-0.77	-0.69	-0.81	
Niño 3	-0.25	-0.69	-0.72	-0.67	-0.74	
Niño 3.4	-0.2	-0.64	-0.66	-0.64	-0.68	
Niño 4	-0.23	-0.61	-0.64	-0.61	-0.68	
EMI	0.21	-0.13	-0.49	-0.54	-0.34	
IOD	-0.5	-0.42	-0.63	-0.6	-0.63	
East IOD	0.28	0.12	0.43	0.51	0.34	
West IOD	-0.19	-0.33	-0.39	-0.38	-0.34	
hallenge #3 undere	stimation c	ot IOD-ISMF	R relatio	nship		

Table 1: Correlation coefficient of ISMR and SST anomalies for different indexes of Observations (a) , MMCFS (b)model.

From: Renu S. Das

Ratio of synoptic scale (2–10 days band pass filter) variance to total variance in GPCP for June (a), July (b), August (c), September (d), and JJAS (e). f–j is similar to (a–e) but for MMCFS, k–o is CCSM4 and (p–t) is similar as (a–e) but for GFDL-FLORB (values are given in percentage)

Challenge#4: Getting reasonable Synoptic variability

MMCFS: Next Generation Seasonal Prediction System

Borrowed from NCEP/COLA

Jain et al (2024), Ankur et al (2022) and Pradhan et al (2022)

Model/component	Atmosphere (resolution)	Ocean (resolution)	Ice model	Land model	References
MMCFSv1	GFS-EL (T382, \sim 38 km)	MOM4p0d (0.5×0.25 between 10° S- 10° N)	SIS sea ice	NOAH-LSM	Moorthi et al. (2001) Griffies et al. (2004) Winton (2000) Ek et al. (2003)
MMCFSv2	GFS-SL (T574, ~38 km)	MOM6 (0.25×0.25 between 10° S- 10° N)	CICE5	NOAH-LSM	Sela (2010) Adcroft (2016) Hunke et al. (2015) Ek et al. (2003)
Parameterizations	Cumulus	Ocean vertical grids	Ocean physical closures		
V1	SAS	Fixed (B stencil)	Non-scale aware		
V2	New SAS	Arbitrary Lagrangian Eulerian (C stencil)	Scale-aware parameterizations		
Horizontal grid size					
V1	1152 × 576	720×410	720×410	1152×576	
V2	1152 × 576	1440×1080	1440×1080	1152 × 576	

Table 1. Major changes to model components between MMCFSv1 and MMCFSv2.

Skill of the Models (During Monsoon Mission)

Year	Stat*		Dynamical*		Actual	MMCFS1	MMCFS2
	1 st Stage*	2 nd Stage*	1 st stage	2 nd Stage		(APR IC)	(APR IC)
2011	<u>98</u>	95	106		102	<u>97</u>	<u>107</u>
2012	<u>99</u>	96	100	104	93	85	102
2013	98	98	104	108	106	<u>102</u>	99
2014	<u>95</u>	93	96	96	88	<u>87</u>	<u>86</u>
2015	93	88	91	86	86	<u>91</u>	77
2016	106	106	111	112	97	117	103
2017	<u>96</u>	98	96	100	95	<u>100</u>	89
2018	97	97	99	105	91	110	<u>93</u>
2019	96	96	94	97	110	104	98
2020	100	102	104	107	109	<u>114</u>	<u>113</u>
2021	<u>96</u>	103	114		99	114	108
2022	99	103	116		106	116	<u>106</u>
2023	<u>96</u>	96			94	<u>93</u>	<u>90</u>
NRMSE	0.91	0.82	1.17	1.20		1.26	0.84
Skill	0.33	0.53	0.43	0.45		0.56	0.74

Skill=Correlation between Observed and Predicted anomalies

*Source: IMD End of Season Reports

Interannual Variability of ISMR and Model Skill

1.25	0.3	25 Inter-annual Variability of ISMR 20 -						
(Normalized) 001	Teleconnection (with ISMR)	Niño 3.4	EIOD	AMM	AZM			
Deviations -	 Observations 	-0.64	-0.04	0.18	0.19			
0.50 ardized	- MMCFSv2	-0.75	0.33	-0.07	0.46			
Stand Stand	- MMCFSv1	-0.83	0.68	0.35	0.08			
0.00	Skill	Niño 3.4	EIO	AMM	AZM 45			
Out 20 y	– MMCFSv2	0.83	0.42	0.15	0.32			
year Red	- MMCFSv1	0.82	0.58	0.01	0.13			
(MM - Highe	r skill of 0.72 over 0.55 of MMCFSv1 (~ 30%	vs GPCP		-1.04	0.72 7.01% 0.d2			
improv observ	vement) when GPCP is considered as vation.	MMCFSv1 vs IMD vs GPCP	5.67 0.59	-1.34 -1.32	0.58 8.74% 1.0 0.55 8.99% 1.06			

Deepesh et al. (2024)

Total precipitation

Improved LPS

Skill of ISMR from Next Generation Models from GFDL, ECMWF and IITM

0.35

0.46

IITM's MMCFSv2 is better in predicting the Indian Summer Monsoon and other drivers of Monsoon Rainfall

0.27

0.34

0.85

MMCFSv2

0.62

Suneeth et al. (2024)

Evaluation of forecast information Discussions with farmers (ICRISAT)

THANK YOU