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ABSTRACT 

Big data analytics using python as a programming language has gained popularity in several fields. 

The modern meteorological data is structured as well as has a complex multidimensional structure 

involving several geometrical, spatial and time coordinates. There is a need to seamlessly integrate 

as well read and write climate data with other applications, e.g. machine learning models which 

are popularly written using a pythonic interface.  The technical report provides a conceptual 

framework in using python language for climate data analytics using India Meteorological 

Department’s (IMD’s) gridded data and other modern reanalysis data. The report provides several 

codes written using python which can be used for meteorological data analysis. Also, as a case 

study, an analysis is done to explore the intraseasonal variability in the daily maximum and 

minimum temperature data from IMD during different season over the monsoon zone. All the 

codes are available in a GitHub repository (https://github.com/CRS-IMDPune/Python-Demo-

Scripts). 
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1. INTRODUCTION AND PURPOSE 

 Operational climate services use climate data from different sources which now a days falls 

under the domain of big data analytics. Data from various sources e.g. surface observation, remote 

sensed observation, model generated data, reanalysis data are commonly used by operational 

forecasters and researchers all over the world which are generated every day. The data also comes 

in several formats. Some data like gridded binary (or GRIB), network common dataset (or 

NetCDF) is popular and is a standard dataset now a days. These formats are routinely used by 

several operational centers to store their data which can be downloaded through internet.  In the 

present scenario of changing climate and increased frequency of extreme events, climate and 

weather data analytics have gained great importance. Historical data analysis and forecasts using 

different dynamical and statistical models have increased among the scientific community. Huge 

amounts of data are being collected and created all over the world which are left for analysis and 

for the development of theoretical and applicational frameworks. The information about the 

atmospheric conditions spatially, temporally and their variation at different vertical levels are to 

be managed together. Thus, the efficient processing of these multidimensional datasets is one of 

the major challenges faced by the climate research community.  

With the availability of vast amounts of data, the demand for techniques and tools for 

analyzing them also increased in the recent times. The requirement of high-performance 

computing, image analysis software, programming languages for analysis of data are few among 

the lists. Multiple formats of data and a variety of tools for their analysis are available now-a-days 

which are getting updated day-by-day. Although several “traditional” programming language are 

used frequently for big-data analytics e.g. FORTRAN, MATLAB or C++, big data analytics using 

Python programming language has gained popularity in the recent decades. The open-source 

availability of software and advanced scientific programming concept and a large community 

support provides additional advantage in using it.  In the meteorological data analysis domain 

several pythonic tools are available now a days. In this report we document a systematic usage of 

Python programming language as a tool for analyzing the meteorological gridded datasets. This 

report describes the major datasets available for the weather and climate research & the modules 

and packages in Python that are commonly used for analyzing them. It also includes few 

programing methods that can be used for analyzing data. While a number of ways are possible to 

do the same job, the applications discussed here are adopted to suit the operational forecasters in 
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the India Meteorological Department. We have also included a scientific case study conducted by 

making use of the tools and packages in Python to provide basic understanding of the packages. 

The case study would focus on capturing the intraseasonal variability in the gridded IMD 

temperature data. All the codes written here are available in a GitHub Repository: 

https://github.com/CRS-IMDPune/Python-Demo-Scripts  

2. METEOROLOGICAL GRIDDED DATASETS 

 Datasets which are commonly used for climate research include: (a) netCDF (b) GRIB and 

(c) BINARY. NetCDF and GRIB data formats are self-describing. That is, even though the users 

are unaware of the structural form of these datasets, they can be read and examined with the use 

of suitable software. There is some additional information about the data available with the datasets 

which are called their ‘metadata’. Metadata is defined as the data that provides information about 

one or more aspects of the data which includes all the attributes and coordinate information of all 

variables. Some of the typical metadata includes information about the source of the data, 

information about each variable such as their description, name, units, missing values etc. All the 

forms of data have evolved over time so as to support the needs of the respective user communities.  

 

2.1. NETCDF 

 Network Common Data Form9 is a portable, self-describing format in which the header 

describes the layout of the file which includes the structure of the data and the metadata associated 

with it. Usually, the files are written following a certain standard NetCDF conventions. The most 

commonly used NetCDF conventions are COARDS and CF conventions. NetCDF is the format 

most commonly used by the climate model generated data. A typical NetCDF file can be ‘dumped’ 

to obtain the information such as the dimension names, dimension sizes, variables along with their 

attributes, spatial and temporal extent, coordinate variables (one dimensional variable same as the 

dimensions) and global attributes. The dimension size ‘Unlimited’ is used when a variable can 

grow to any length along that dimension.  Some operations require an unlimited dimension such 

as combining multiple files along a dimension (Ex: Time). 

 There are two versions of NetCDF data (3 and 4). NetCDF3 was used for a long time and 

as the grids became complicated and the users demanded for more flexibility, NetCDF4 was 

developed.  
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2.2. GRIB 

 GRIB8,13 format is used by all the world’s operational weather centers and is designed and 

maintained by the World Meteorological Organization (WMO). It is a file format used for the 

storage and transport of gridded meteorological data. It is designed in such a way that it is compact 

and is an efficient vehicle for transmitting large volumes of data over high-speed 

telecommunication lines.  GRIB format may or may not be considered as ‘self-describing’. All the 

information which is necessary to unpack the data are contained within each record. But the 

variable which is unpacked is denoted by an ‘indicator parameter’ and the variable’s name and 

units are to be obtained separately from a grib table. 

 A GRIB file contains one or more data records which are arranged in a sequential bit 

stream. Each record has a header which is followed by a packed binary data. The header contains 

information about the qualitative nature of the data (field, level, date of production, forecast valid 

time, etc.), information about the header itself, methods and parameters to be used to decode the 

data and the layout and geographical characteristics of the grid of the data. 

WMO has issued three editions of GRIB, Edition 0, 1 and 2. GRIB 0 is now obsolete, 

unsupported and is rarely used.  GRIB 1 is still used but its future enhancements are frozen. Each 

GRIB1 record contains information for two horizontal dimensions, such as latitude and longitude, 

for one time and one level. But GRIB 2 allows each record to store multiple horizontal grids and 

levels for each time. A collection of GRIB records is called a GRIB file. Generally operational 

weather centers create reanalysis and forecast products in this format. 

 

2.3 BINARY 

 Binary7,12 files used in the climate data analysis are generally created from compiled 

languages such as Fortran, C/C++. They are supported by the compiled languages and are easy to 

create. For reading a binary data file, the user should know the following details beforehand:  

(a) The structure of the data. 

(b) The data type of all the variables in the file (such as integer, float, double etc.) 

(c) The ‘endian’ type of the file being read (‘little’ endian or ‘big’ endian) 
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Without knowing this information, it is difficult to read the contents in binary files and therefore 

there are no generic file tools to deal with binary files. This is why binary files are not very 

commonly used for archiving climate data.   

In GrADS (Grid Analysis and Display System), the binary data and the metadata are stored 

in separate files. The metadata file is called the data descriptor file, with the complete description 

as well as instructions to read the data. The extension of the descriptor file is ‘.ctl’ and so it is also 

referred to as ‘control file’. The other file contains entirely of the data with no space or time 

identifiers. 

 

3. TOOLS FOR HANDLING METEOROLOGICAL DATA 

A computer program is a set of instructions, which performs a specific task when executed 

by a computer. Computer, being an electronic machine, can understand any instruction written in 

binary form (0s and 1s) which is called ‘Machine Language’. A computer can easily understand 

this language, but it is very difficult for humans to write an instruction in it. Thus, another 

convenient language was developed which is the assembly language. In this machine operations 

were represented using mnemonic codes (Ex: ADD, MUL) and symbolic names for memory 

addresses. To translate an assembly language to machine language a program called assembler 

was needed. Both these languages form the low-level languages. High level languages are much 

easier to write as these are similar to instructions written in the English language. Generally high-

level languages are platform independent which makes it easy to run in different machines. The 

program written in high level language is called source code. An interpreter (line by line 

translation) or compiler (whole source code is translated) translates the source code into object 

code which is understandable by the machine. A linker will combine the object code and necessary 

libraries and modules into machine language and the code is then executed. There are a lot of high-

level languages available now and choosing one language from them is based on the purpose it is 

expected to fulfill. 

While considering the meteorological gridded datasets, reading and analyzing them can be 

quite problematic because of their multidimensionality. Also dealing with the frequent missing 

values in the grid points and their enormous size makes them often difficult to handle with. So, the 

need for efficient software, tools and techniques are of high priority for weather and climate related 

studies. Some common programming languages that are used include C, C++ and FORTRAN 
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which are used in developing climate models. For the analysis of the observational and model 

generated meteorological gridded datasets the languages which are used commonly now-a-days 

includes Grid Analysis and Display System (GrADS), Climate Data Operator (CDO), NCAR 

Command Language (NCL), FERRET, MATLAB, R and Python.  

 

4. PYTHON- AS A TOOL FOR HANDLING METEOROLOGICAL DATA 

Python was developed by Guido van Rossum11 at the National Research Institute for 

Mathematics and Computer Science in Netherlands in 1990. Python became a popular 

programming language, widely used in both industry and academia because of its simple, concise 

and extensive support of libraries. Python code is available under General Public License (GPL) 

and maintained by a core development team at the same institute. There are some very well-known 

advantages of Python that make it a popular programming language. Python is an interpreted 

language which can be treated in procedural, object-oriented or functional ways. It is capable of 

cross-platform applications, easily readable with syntax similar to English language, supported by 

a vast collection of libraries, can be easily integrated with other programming languages and 

written with minimum lines of code. In addition to these, Python is a free and open-source software 

which makes it easy to use, modify and redistribute. Because of these, Python has a very wide 

application in different fields such as business, scientific and numerical, creation of web 

applications, software development, image processing and many others. 

Exploratory data analysis is an approach to analyze data, to summarize the main 

characteristics of data, and better understand the data set. It also allows us to quickly interpret the 

data and adjust different variables to see their effect. Accessing, reading and analyzing 

meteorological datasets forms an instance of the exploratory data analysis. Python has been used 

more frequently and is more popular among the weather and climate research community for a 

few years. As the usage of Python in climate data analysis has increased, lots of libraries, packages 

and modules have been introduced which support the access and analysis of meteorological 

datasets efficiently. Since it is a free and open source software, frequent updates according to the 

rising demands in the user community are available for all sorts of Python applications. 
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5. PYTHON MODULES AND PACKAGES FOR DATA ANALYSIS 

A lot of modules and packages are available in Python which gives extensive support in 

handling the data and executing the operations. A module is a Python file that is to be imported 

into the Python scripts or other modules. It often defines members such as classes, functions and 

variables that can be used in the files where it is imported. At the same time, a package is a 

collection of related modules that work together to provide certain functionality. All the related 

modules are placed within a folder (sometimes nested within subfolders) along with an __init__ 

file inside the folder. This __init__ file informs Python that it is a package and it can be imported 

as any other module.  A library is an umbrella term that loosely means “a bundle of code” which 

may contain tens or even hundreds of individual modules. They can provide a wide range of 

functionality and Matplotlib is one such example of a plotting library. The Python Standard 

Library contains a wide range of built-in modules (written in C) which can be used to deal with 

everyday programming. These are included in the standard version of Python, so there is no need 

for any additional installations. For handling the meteorological datasets, few packages in Python 

are most necessary which includes numpy, pyngl, pynio, pandas xarray, cfgrib, datetime, cartopy, 

basemap, pandas, geopandas, regionmask etc. Each of these packages are important in multiple 

ways such as for doing mathematical operations, reading different formats of data, plotting, for 

masking specific regions and so on. A brief note on these packages are as follows: 

5.1 NUMPY 

NumPy4,14 is the fundamental package used for scientific computing in Python. This Python 

library provides a multidimensional array object and various derived objects (such as masked 

arrays and matrices). It also provides an assortment of routines for fast operations on arrays, 

including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier 

transforms, basic linear algebra, basic statistical operations, random simulation and much more. 

NumPy stands for numerical python. In Python there are lists which serve the purpose of arrays, 

but they are slow to process. NumPy aims to provide an array object that is much faster than Python 

lists. The array object in NumPy is called ndarray that encapsulates n-dimensional arrays of 

homogeneous data types, with many operations being performed in compiled code for 

performance. NumPy is a Python library and is written partially in Python, but most of the parts 

that require fast computation are written in C or C++. 
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5.2 XARRAY and CFGRIB 

The unlabeled, n-dimensional arrays of numbers (NumPy ndarray) are the most widely 

used data structure for scientific computing. But the metadata associated with the data cannot be 

meaningfully represented. It depends on the functionality of individual users and domain-specific 

packages. Xarray5,21 expands the capabilities of the NumPy ndarrays by providing a lot of 

streamline data manipulation. Xarray includes functions for advanced analytics and visualization 

which is hugely inspired from the Python library ‘Pandas’ and uses it internally. Pandas can work 

well with tabular data but xarray is more suitable for data with higher dimensions. Xarray makes 

the handling of n-dimensional arrays easier in many ways such as: 

● While Numpy uses axis labels, xarray uses named dimensions which makes it easy to select 

data and apply operations over dimensions. 

● Xarray can hold heterogeneous data in a ndarray while NumPy ndarray can handle only 

one data type. 

● Xarray makes Nan handling easier in Python 

● Xarray keeps track of the arbitrary metadata on the object. 

Xarray has two data structures: 

● DataArray — for a single data variable 

● Dataset — a container for multiple DataArrays (data variables) 

Cfgrib is a Python interference to map GRIB files to the NetCDF Common Data Model 

following the CF Convention using ecCodes. It is designed to support a grib engine to xarray and 

enables the engine='cfgrib' option to read GRIB files with xarray. It reads most GRIB 1 and 2 

files including heterogeneous ones. 

5.3 PANDAS 

Pandas6,20 is a Python package providing fast, flexible and expressive data structures 

designed to make working with “relational” or “labeled” data both easy and intuitive. It is one of 

the most powerful and flexible open source data analysis/manipulation tools available in any 

language. Pandas is well suited for different types of datasets such as tabular data with 

heterogeneously-typed columns, ordered and unordered time series data, arbitrary matrix data and 

any other form of observational / statistical data sets. The data need not be labeled at all to be 

placed into a pandas data structure. Pandas is built on top of NumPy and is designed in such a way 
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as to integrate well within a scientific computing environment with many other third-party 

libraries. The two primary data structures of pandas are Series (one dimensional) and DataFrame 

(two dimensional). 

5.4 PyNGL & PyNIO 

 PyNGL15 is a Python module built on top of NCAR Command Language’s (NCL) graphics 

library, which produces publication-quality, two-dimensional visualizations especially for climate 

and weather data. There are interfaces for the display of contour plots, XY plots, map projections, 

vector and streamline plots. 

 PyNIO is a Python module that allows read and/or write access to a variety of scientific 

data formats popular in climate and weather such as NetCDF3 / NetCDF4, GRIB1 / GRIB2, HDF4, 

HDF-EOS2, HDF-EOS5 and Shapefile. PyNIO has a data model interface that is modeled on the 

NetCDF data model. 

5.5  DATETIME 

In Python, for dealing with date as well as time a module named ‘datetime’ has to be 

imported because they are not a data type of their own in Python. It is an inbuilt module that comes 

with Python. This module supplies classes to manipulate date and time. They provide a variety of 

functions that can be performed on dates, times and time intervals. 

5.6  MATPLOTLIB & BASEMAP 

Matplotlib2,18 is a comprehensive library for creating static, animated and interactive 

visualizations in Python. It can create publication quality plots, make interactive figures that can 

zoom, pan and update, customize visual style and layout, export to multiple file formats and use a 

rich array of third-party packages built on Matplotlib. 

The matplotlib basemap toolkit is a library for plotting 2D data on maps in Python. 

Basemap does not do any plotting on its own. It is an extension of matplotlib which provides the 

facilities to transform coordinates to one of the 25 different map projections. Matplotlib is then 

used to plot contours, images, vectors, lines or points in the transformed coordinates. Basemap can 

add features such as shoreline, river, political boundary etc. to the desired map projection region. 

It was mainly developed to address the needs of earth scientists, particularly oceanographers and 

meteorologists, but it has a wide application in other disciplines also. It is to be noted that this 
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package is being deprecated in favor of the new package ‘cartopy’. It is highly recommended for 

the users to use cartopy rather than using basemap.  

5.7 CARTOPY 

Cartopy16 is a Python package designed for geospatial data processing in order to produce 

maps and other geospatial data analyses. The major features of cartopy are its object-oriented 

projection definitions, its ability to transform points, lines, vectors, polygons and images between 

those projections. This package makes use of PROJ, NumPy and Shapely libraries and has a 

programmatic interface built on top of the Matplotlib library for the creation of maps having 

publication quality. Basically, cartopy is a cartographic Python library with Matplotlib support. 

5.8 GEOPANDAS 

GeoPandas3,19 project is an extension of the pandas library to add support for geospatial 

data to pandas objects. The core data structures in GeoPandas are the geopandas.GeoDataFrame 

and geopandas.GeoSeries which are the respective subclasses of Pandas DataFrame and Series. 

The DataFrame can store geometry columns and perform spatial operations whereas Series 

handles the geometry. That is, the geopandas.DataFrame is a combination of pandas.Series 

(numerical, boolean, text etc.) and geopandas.GeoSeries (points, polygons etc.). GeoPandas 

objects can act on shapely geometry objects and perform geometric operations. GeoPandas further 

depends on fiona for file access and matplotlib for plotting. 

5.9 REGIONMASK 

Regionmask17 is a Python module which contains a number of predefined regions such as 

countries, a landmask and regions used in scientific literatures. It can plot the figures of these 

regions by using matplotlib and cartopy. This module can be used for creating user-defined masks 

of regions for arbitrary longitude and latitude grids (2D integer mask and 3D boolean mask). This 

module can use geopandas to read shapefiles and can create user-defined masks over regions 

required. 

6. GETTING HOLD OF PYTHON PACKAGES 

The modules that are described in the previous sections form only a small fraction of the 

available packages and libraries supported by Python. Python has a very rich standard library 

which can be used immediately on installing Python. Different repositories are there from which 
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one can access multiple packages for Python. Among them the Python Package Index (PyPI, 

https://pypi.org/) is the largest Python repository which contains many packages developed and 

maintained by the Python community. 

There are multiple ways to install Python. Downloading the official Python distributions 

from Python.org and by using package manager such as Anaconda (https://www.anaconda.com/) 

are two of the most common methods. Anaconda is a package manager, an environment manager, 

a Python and R data science distribution and a collection of over 7500 open source packages. It is 

free to install and offers free community support as well. The environment management system in 

Anaconda named ‘Conda’ makes it easy to install/update packages and create /load environments. 

Conda is a cross platform package and environment manager which installs and manages conda 

packages from Anaconda repository as well as from Anaconda Cloud. Conda packages are binaries 

and there is no need to have compilers available to install them. Over 250 packages are 

automatically downloaded with Anaconda and over 7500 additional open-source packages can be 

installed individually according to the need. One can install additional packages by using the 

command ‘conda install package_name’ which will download and install the package and its 

dependencies by default. 

Once Python is installed the packages can be installed either using conda or using pip 

which are nearly identical. Pip is a package installer for Python and it can install packages from 

PyPI as well as other indexes. Pip is the Python Packaging Authority’s recommended tool for 

installing packages from PyPI. Pip installs Python packages whereas conda installs packages 

which may contain software written in any language. Before invoking pip, one must make sure 

that they have installed a Python interpreter. At the same time, conda can install Python packages 

and the Python interpreter directly. Using conda it is also possible to create isolated environments 

with different Python versions and packages rather than installing all packages to the same 

environment. In pip there is no built-in support for environments, but have to depend on other tools 

for creating environments. While installing packages using pip the dependencies of packages are 

not installed simultaneously which may lead to the creation of broken environments. In contrast 

conda verifies that all requirements for installing the package are met in the environment. This 

may cause some extra time, but prevents the creation of broken environments. Despite the large 

collection of packages available in Anaconda repository and Anaconda Cloud, it is still small 

compared to over 150,000 packages available in PyPI. Occasionally the package which is not 
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available in conda and available in PyPI can be installed using pip. So, it makes sense that one can 

use conda and pip together when needed. 

7. ANALYSIS OF METEOROLOGICAL GRIDDED DATASETS USING PYTHON 

In the previous sections we have discussed the usage of Python tools for data analysis and 

the packages available for that. Here we have included some sample Python codes which use the 

above packages to read, write and analyze meteorological gridded datasets. The detailed codes and 

sample dataset are available in the GitHub repository: https://github.com/CRS-IMDPune/Python-

Demo-Scripts. In every data analysis, calling the data and reading the content in it forms the most 

important part. Below given are the parts of Python scripts which will help us read the datasets of 

the formats discussed above. 

 NetCDF4 

###########Import necessary modules################ 

import netCDF4 as nc 

############ File to be read #################### 

file_name= 

"/mnt/e/Python_Scripts/Sample_Data/RFone_imd_rf_1x1_2019.nc" 

################# open file ###################### 

f = nc.Dataset(file_name) 

print(f)              # gives us information about the variables 

                       #contained in the file and their dimensions 

for dim in f.dimensions.values(): 

    print(dim)        # Metadata for all dimensions 

for var in f.variables.values(): 

    print(var)        # Metadata for all variables 

print(f['rf'])        # Metadata of single variable 

################# read variables  ################ 

rf   = f.variables['rf'][:] 

lats = f.variables['lat'][:] 

lons = f.variables['lon'][:] 

time = f.variables['time'][:] 

print(rf.min()," ,",rf.max()) 
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For reading multiple netCDF files, use the function netCDF4.MFDataset(). By using the 

function, the files will be concatenated in the unlimited dimension in the file (usually ‘time’ 

dimension). One can reshape the files according to the need of the analysis. 

f = nc.MFDataset(file_name)   # Read all data files together 

For example, if you want to reshape an hourly data for a year of dimension 8760  x 129 x 129  

(time, latitude and longitude) into 365 x 24 x 129 x 129, then the following method can be used. 

RF=np.reshape(rf,(ndays,ntime,len(lats),len(lons))) 

print(RF.shape)     # print shape of the variable 

 GRIB 

Below given are the methods for reading data from grib files. 

 

import xarray as xr 

ds=xr.open_dataset('/mnt/e/Python_Scripts/Sample_Data/ERA5_Temperature_

2020.grib',engine='cfgrib',backend_kwargs={'indexpath':''})    

##For single file 

 

ds=xr.open_mfdataset('/mnt/e/Python_Scripts/Sample_Data/ERA5_Temperatur

e_*.grib',engine='cfgrib',backend_kwargs={'indexpath':''})          

## For multiple files 

print(ds)         ###Print summary of the file 

print(ds.t)       ###Print summary of the variable 

print(ds.latitude) 

print(ds.longitude) 

print(ds.isobaricInhPa) 

temp=ds.t         ## Read temperature in a variable 

  BINARY 
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The binary data files are not read in the same way as the GRIB or NetCDF4 data. Because 

as we have already mentioned data structure of binary files should be read from a control file. For 

other datasets even though we don’t know the structure, it is possible to read them and get 

information from them. So, data in binary files are read as a single dimensional variable and then 

reshaped into the appropriate dimensions as obtained from the control file. 

import numpy as np 

filename='/mnt/e/Python_Scripts/Sample_Data/Maxtemp_MaxT_2018.GRD'    

##File path 

nlat=31                 # Obtained from the control file 

nlon=31 

ntime=365 

lons=np.arange(67.5,98.5,1)     # Define latitude and longitude as  

obtained from control file 

print(lons) 

lats=np.arange(7.5,38.5,1) 

print(lats) 

f=open(filename,'rb') 

data=np.fromfile(f,dtype="float32",count=-1) #Opening and reading  

the file into a one-dimensional array 

  ################Reshaping data###################### 

temp=np.reshape(data,(365,31,31),order='C') 

print(temp.shape) 

exit() 

 

Sometimes it is not necessary to read and analyse the dataset for the whole spatial and 

temporal regions. Extracting data for a particular location or region, for a particular vertical level 

and for a particular period of time are much frequently used in the weather and climate studies. 

Given below are the methods for subsetting the data for required region, period and level. 

 

latbounds = [ -15 , 15 ] #degrees north 

lonbounds = [ 70.5 , 100.5 ]  # degrees east  

levbounds = [500.0 , 900.0 ] 
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latselect=np.logical_and(lats>=latbounds[0],lats<=latbounds[1]) 

lonselect=np.logical_and(lons>=lonbounds[0],lons<=lonbounds[1]) 

levselect=np.logical_and(levs>=levbounds[0],levs<=levbounds[1]) 

temp_space1=temp[:,levselect,latselect,lonselect] 

print(temp_space1) 

 

dt1=datetime.datetime(2020,1,10,15,00,00) ##Give the required start time  

dt2=datetime.datetime(2020,2,10,15,00,00) ##Give the required end time  

def minutes_of_year(dt):         ####Defining a function to obtain   

 return seconds_of_year(dt)//60 hours_of_year from the 

 datetime provided 

  

def hours_of_year(dt): 

 return minutes_of_year(dt)//60 

def seconds_of_year(dt): 

 dt0=datetime.datetime(dt.year,1,1,tzinfo=dt.tzinfo) 

 delta=dt-dt0 

 return int(delta.total_seconds()) 

ind1=hours_of_year(dt1)    ###Using the function the hour is  

ind1=hours_of_year(dt2)    obtained  which is the index 

temp_time1=temp[ind1:ind2,:,:,:]  #Selecting data for a period 

The same method can be used to obtain data for single latitude, longitude, level and time 

step by making minor modifications in the above method. The above example shows how to extract 

hourly data from a file having hourly data for a single year. According to the time steps in the 

dataset used, modifications have to be done accordingly. It is also necessary to write the extracted 

datasets or some calculated parameters in a file which can be used at any later point of time without 

repeatedly running the codes. One of the most common ways of saving a dataset is to write it in 

NetCDF format. Given below is a method showing how to write a NetCDF file.  

import netCDF4 as nc 

 

fn='/mnt/e/Python_Scripts/DEMO/olr_subsets.nc' #Set path and name of output  

file 
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fout=nc.Dataset(fn,'w',format='NETCDF4')  #Open output file 

time=fout.createDimension('time',None)  # Set all required dimensions  

Time-Unlimited 

Lats=fout.createDimension('lat',13)    

Lons=fout.createDimension('lon',12) 

fout.title="Subset of NOAA OLR Data"  #Setting some attributes 

fout.subtitle="Lat, Lon and Time subset" 

 

lat=fout.createVariable('lat',np.float32,('lat',)) #Create variables and  

attributes 

lat.units='degrees_north' 

lat.long_name='latitude' 

lon=fout.createVariable('lon',np.float32,('lon',)) 

lon.units='degrees_east' 

lon.long_name='Longitude' 

time=fout.createVariable('time',np.float64,('time',)) 

time.units='hours since 1800-01-01 00:00:0.0' 

time.long_name='time' 

 

olr=fout.createVariable('olr',np.float64,('time','lat','lon')) 

olr.units='W/m^2' 

olr.standard_name='Outgoing Longwave Radiation' 

olr.dataset='NOAA Interpolated OLR' 

olr.long_name='Daily OLR' 

 

lat[:]=lats[latselect]   # Giving values to the dimensions and variables 

lon[:]=lons[lonselect] 

time[:]=Time[istart:iend+1] 

olr[:,:,:]=olrsub1 

 

The sample code written above deals with how to read the datasets, extract the variables 

according to spatial and temporal requirements and writing data in a file. Apart from these basic 

necessities, it is very important to visualize and analyze the data. For that, different plotting 
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techniques are used, in which line graphs, scatter plots, contours, vector plots are of high demand 

in weather and climate studies. Given below are some of the fundamental, yet most convenient 

plotting methods to visualize 1-d and 2-d variables. 

The sample code here shows how to plot a time series using hourly data and give the time stamps 

as the tick marks in x-axis. The output obtained using the script is shown in Figure 1. 

 

import datetime as dt 

import numpy as np 

import matplotlib.pyplot as plt 

#########Creating date strings for X axis############# 

date_string=[] 

for n in range(0,u10sub.shape[0],96): 

 dates=dt.datetime(2019,6,1,0,0,0)+n*dt.timedelta(hours=1)  

 i=int(n/24) 

 date_string.append(dates.strftime('%Y%m%d')) 

 del dates 

x=np.arange(0,u10sub.shape[0],96) 

##################Plot time series ################# 

fig=plt.figure(figsize=(16,7)) 

plt.plot(u10sub[:,0,0],linewidth=1.0,linestyle='-',color='b') 

plt.title(' Time Series of U wind at 10m from 01/6 to 01/8 2019') 

plt.ylabel('U wind (m/s)') ;plt.xlabel('Time') 

plt.xticks(x,date_string,rotation=60) 

plt.grid(True) 

 

plt.savefig('time_series.png') 
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Figure 1: Time Series of zonal wind at 10m for June and July 2019 from the ERA5 hourly data  

 

The method shown below shows how to plot a filled contour diagram over the map which helps to 

visualize the spatial distribution of any variable(2-d) over a region. The output is shown in Figure 

2. 

import cartopy 

import cartopy.crs as ccrs 

import cartopy.feature as cfeature 

from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER 

import matplotlib.pyplot as plt 

 

m = plt.axes(projection=ccrs.PlateCarree()) 

m.set_extent([lonbounds[0], lonbounds[1], latbounds[0], latbounds[1]], 

crs=ccrs.PlateCarree()) 

m.coastlines(resolution='110m') 

m.add_feature(cartopy.feature.COASTLINE, edgecolor='black') 
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gl=m.gridlines(crs=ccrs.PlateCarree(),draw_labels=True,color='gray',lin

ewidth=1.0) 

gl.xlabels_top = False 

gl.ylabels_right = False 

gl.xformatter = LONGITUDE_FORMATTER 

gl.yformatter = LATITUDE_FORMATTER 

 

c=m.contourf(Lons,Lats,U10SUB,transform=ccrs.PlateCarree(),cmap='jet') 

plt.title('Wind (m/s)', loc='right') 

plt.colorbar(c,shrink=0.75) 

plt.savefig('contour_map_cartopy.png') 

Figure 2: Filled contour plot of zonal wind at 10m on 1st June 2019 from the ERA5 hourly data 

 

The method above uses cartopy for including maps. It is also possible to use the basemap 

package for the same purpose. But, as mentioned earlier, basemap is being deprecated and it is 

highly recommended to use cartopy. For plotting a line contour the ‘contourf’ function can be 

replaced with ‘contour’ in the above example. The sample code below shows a method for 
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overlaying the wind vector over a filled contour for a particular region and for a particular time 

step (See Figure 3).  

plt.figure() 

m = plt.axes(projection=ccrs.PlateCarree()) 

m.add_feature(cartopy.feature.BORDERS, edgecolor='black') 

m.set_extent([lonbounds[0], lonbounds[1], latbounds[0], latbounds[1]], 

crs=ccrs.PlateCarree()) 

m.coastlines(resolution='110m') 

 

gl=m.gridlines(crs=ccrs.PlateCarree(),draw_labels=True,color='gray',lin

ewidth=1.0) 

gl.xlabels_top = False 

gl.ylabels_right = False 

gl.xformatter = LONGITUDE_FORMATTER 

gl.yformatter = LATITUDE_FORMATTER 

 

plt.suptitle('ERA5 Wind Vector over U wind at 10 m (01/06/2019)') 

plt.title('Wind (m/s)', loc='left') 

plt.xlabel('Lon') 

plt.ylabel('Lat') 

 

c= m.contourf(Lons, Lats, U10SUB, transform=ccrs.PlateCarree()) 

 

#################Now overlay Plot vector############################### 

q=m.quiver(Lons, Lats, U10SUB, V10SUB, width=0.003, scale_units='xy', 

scale=5, transform=ccrs.PlateCarree(), regrid_shape=20) 

qk=plt.quiverkey (q,0.95, 1.02, 20, '20m/s', labelpos='N') 

plt.colorbar(c) 

plt.savefig('vector_overlay_cartopy.png') 
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Figure 3: Wind 

Vector at 10 m 

overlaid on the filled 

contour showing the 

zonal wind at 10m on 

1st June 2019 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Wind Vector 

at 10 m overlaid on the 

filled contour showing 

the zonal wind at 10m on 

1st June 2019 along with 

the state boundaries 

added to it. 
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Apart from these common plotting techniques, the use of shapefiles for providing 

administrative boundaries to the plots are prevalent in operational weather and climate forecast 

scenarios. The use of shapefile varies from simply overlaying the boundaries in the plots to 

calculation of zonal statistics for the regions specified using the shapefiles. It is utilized for 

providing forecasts for administrative regions such as states and districts and also river basins etc. 

Given below are the sample codes to add a shapefile into the contour plot (Figure 4) and to 

calculate state average of any variable using shapefile and to plot it (Figure 5). 

 

import cartopy 

import cartopy.crs as ccrs 

import cartopy.feature as cfeature 

from cartopy.io.shapereader import Reader 

import matplotlib.pyplot as plt 

from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER 

 

plt.figure() 

m = plt.axes(projection=ccrs.PlateCarree()) 

m.add_feature(cartopy.feature.BORDERS, edgecolor='black') 

m.set_extent([lonbounds[0], lonbounds[1], latbounds[0], latbounds[1]], 

crs=ccrs.PlateCarree()) 

m.coastlines(resolution='110m') 

 

gl=m.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, color='gray', 

linewidth=1.0) 

gl.xlabels_top = False 

gl.ylabels_right = False 

gl.xformatter = LONGITUDE_FORMATTER 

gl.yformatter = LATITUDE_FORMATTER 

 

plt.suptitle('ERA5 Wind Vector over U wind at 10 m (01/06/2019)') 

plt.title('Wind (m/s)', loc='left') 

plt.xlabel('Lon') 

plt.ylabel('Lat') 
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###################Add Shapefile######################## 

fname='/mnt/e/Python_DEMO_Scripts/plotting/shpfile/Admin2.shp' 

m.add_geometries(Reader(fname).geometries(),ccrs.PlateCarree(), 

edgecolor='k',facecolor='none') 

c= m.contourf(Lons, Lats, U10SUB, transform=ccrs.PlateCarree()) 

 

#################Now overlay Plot vector################### 

q=m.quiver(Lons, Lats, U10SUB, V10SUB, width=0.003, scale_units='xy', 

scale=5, transform=ccrs.PlateCarree(), regrid_shape=20) 

qk=plt.quiverkey (q,0.95, 1.02, 20, '20m/s', labelpos='N') 

plt.colorbar(c) 

plt.savefig('add_shapefile_cartopy.png') 

 

The above example shows how to plot a filled contour plot over a particular region with wind 

vectors overlaid on it and to add a shapefile into it. The script below shows the entire steps from 

reading the data, creating a mask using shapefile, calculating state averages using the mask and 

plotting the averages for each state. 

 

import geopandas as gpd 

import regionmask  

import numpy as np 

import cartopy.crs as ccrs  

import matplotlib.pyplot as plt 

import matplotlib.patheffects as pe 

import xarray as xr 

import netCDF4 as nc 

 

############### Read the data file########################### 

file_name ='/mnt/d/DATA/ERA5/Wind/ERA5_Wind_2019.nc' 

f = xr.open_dataset(file_name) 

u10=f.u10.values 

lat=f.latitude.values 
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lon=f.longitude.values 

lat_size=len(lat) 

lon_size=len(lon) 

 

################Read the shape file########################## 

fname='/mnt/e/Python_DEMO_Scripts/plotting/shpfile/Admin2.shp' 

shp=gpd.read_file(fname) 

#print(shp.head()) 

 

state_name=list(shp['ST_NM']) 

state_1=list(shp['ST_NM']) 

indexes=[state_name.index(x) for x in state_1] # Obtain state indexes 

 

state1=regionmask.Regions(outlines=list(shp.geometry.values[i] for i in 

range(0,shp.shape[0])),names=shp.ST_NM[indexes],abbrevs=shp.ST_NM[index

es], name='state',)     ##Obtaining region boundaries 

state1_mask=state1.mask(lon,lat)   ##### State mask variable 

 

###################Calculating first state average################ 

time_ind=10      ####Any time step as per need 

u10_all=np.full([lat_size,lon_size],np.nan,order='C')  ##Create a  

variable to store state average in whole lat-lon range 

result=np.where(state1_mask==0)  ###Obtain indices for first state 

lat_ind=result[0]     # latitude index for state1 

lon_ind=result[1]     # longitude index for state1 

u10_state=np.mean((u10[time_ind,:,:][lat_ind,:][:,lon_ind]),axis=(0,1)) 

 

#######Calculate state mean (single value)############### 

u10_all[result]=u10_state  ##Store state mean in the whole lat-lon range 

del u10_state    # delete variables for future use 

del result 

del lat_ind 

del lon_ind 
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#####################Plotting Settings############################# 

###############Plotting state 1 average############################ 

lev_min=-5    #Setting contour min,max levels and divisions 

lev_max=5 

lev_n=30 

plt.figure(figsize=(18,8))    # Plot settings 

ax=plt.axes() 

x,y=np.meshgrid(lon,lat) 

c=ax.contourf(x,y,u10_all,cmap='tab20b',levels=np.linspace(lev_min,lev_

max,lev_n))       #Contour plot 

shp.plot(ax=ax,alpha=0.8,facecolor='None',lw=1) # Shape file plot 

 

###########Calculating and plotting remaining state average in a loop############## 

for i in range(1,shp.shape[0]):  ## Remaining states in a loop 

 result=np.where(state1_mask==i) 

 lat_ind=result[0]     

 lon_ind=result[1]     

u10_state=np.mean((u10[time_ind,:,:][lat_ind,:][:,lon_ind]),axis=(0,1)) 

 u10_all[result]=u10_state 

 del u10_state 

  

ax.contourf(x,y,u10_all,cmap='tab20b',alpha=0.8,levels=np.linspace(lev_

min,lev_max,lev_n)) 

shp.plot(ax=ax, alpha=0.8, facecolor='None, lw=1) 

 

cbar=plt.colorbar(c)     ## Give colorbar 

cbar.set_label('U at 10m', rotation=270)  ##Colorbar label 

plt.suptitle('State Average of U Wind at 10m/s at 01/01/2019 09 UTC') 

plt.title('Wind (m/s)', loc='left') 

plt.xlabel('Lon') 

plt.ylabel('Lat') 

plt.savefig('zonal_stat_final.png') 
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exit() 

 

It is to be noted that there are multiple ways to do the same application in Python. These 

examples are meant to introduce a few methods which can be helpful for performing the most 

common steps in the weather and climate research. According to the demand of the user these 

codes can be modified and can be extended to further applications according to his/her expertise.  

 

Figure 5: State average of zonal wind at 10m on June 1, 2019 09 UTC calculated using the 

shapefile of states 
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8. A CASE STUDY 

This section demonstrates the usage of Python as a tool for conducting a scientific study in 

the weather and climate sciences. We have depicted some of the most commonly used plotting and 

analytical methods in climate science which has been done with the help of Python. 

 We would like to explore the evidence of Intraseasonal Variability of Minimum and 

Maximum Temperature over the Monsoon Zone of India during pre-monsoon, monsoon and winter 

seasons using the IMD daily gridded temperature data. Several studies on heatwave and cold wave 

implicitly assume the intraseasonal variability in the temperature data1. In the monsoon season 

intraseasonal variability is well known in the rainfall data. How do the intraseasonal variability are 

reflected in a temperature field? For the study we have considered the gridded minimum and 

maximum temperature data from India Meteorological Department10 which is in binary format. 

This dataset is freely available at: 

https://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html. The data is selected 

for a period of 21 years from 2000 to 2020 which has been used for the study. The region 

considered for the study is the Monsoon Zone of India (MZI) which extends from 18-29 0N and 

65-89 0E. The analysis of time series, the presence of intraseasonal oscillations in the minimum 

and maximum temperature and their relationship with the moisture availability in the atmosphere 

has been done for the study. 

Figure 6 shows the time series of maximum temperature and minimum temperature area 

averaged over MZI from 2000 to 2020 along with their corresponding mean value shown as a 

dotted line. The continuous red line shows the maximum temperature pattern during 21 years with 

a primary peak during the pre-monsoon season of March-April-May (MAM). On the onset of 

monsoon (June-July) the maximum temperature falls and then a secondary peak occurs during the 

peak monsoon months of Aug-Sept. Again, it falls during the winter months of Nov-Dec-Jan-Feb 

(NDJF). While considering the same for minimum temperature it follows the same pattern as that 

of maximum temperature during the pre-monsoon and winter months. But after the onset of 

monsoon the fall in minimum temperature is gradual during monsoon and falls steeply during 

winter months. Apart from the falling trend in minimum temperature there is no secondary peak 
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in it corresponding to that in the maximum temperature during peak monsoon. That is, during the 

monsoon a rise in maximum temperature is associated with a gradual fall in minimum temperature. 

Figure 6: Time Series of maximum temperature (red continuous line) and minimum temperature (blue continuous 

line) in degree Celsius from January 2000 to December 2020. The dotted lines correspond to the mean maximum (red) 

and minimum (blue) temperature over all these years. 

The power spectrum of a time series describes the distribution of power into frequency 

components composing that signal. Here we have analyzed the mean power spectrum of minimum 

and maximum temperature over all the years for each season considered. Figure 7 shows the 

average power spectrum of minimum and maximum temperature during MAM, JJAS and NDJF 

over all the years from 2000-2020. The X-axis here represents the logarithmic frequency and the 

Y-axis here represents the power multiplied with the corresponding frequency. From the figure we 

can see that there is a strong intraseasonal variation in the evolution of maximum temperature 

during all the three seasons. The same while considering minimum temperature shows oscillations 

during MAM and NDJF and not very significant during monsoon.  

During the pre-monsoon months (MAM), strong intraseasonal fluctuations with time 

periods of 20-30, 40-50 and 9-10 days are noticed in maximum temperature. Similar oscillations 

are present in the spectrum of minimum temperature also but with a lesser magnitude. While 

considering the monsoon months (JJAS) it is seen that multiple intraseasonal oscillations are seen 

with periods of 85, 60-70, 25 and 10 days. It is to be noted that even though strong oscillations are 

there in the maximum temperature, no such signals are obtained in the spectrum of minimum 
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temperature. In winter (NDJF) also intraseasonal oscillations with periods of 80-90, 60, 30-40 and 

10 days are noticeable both in the minimum and maximum temperature with almost the same 

magnitude. So it is understood that there is strong intraseasonal fluctuations present in the 

maximum and minimum temperatures during all the seasons (except for minimum temperature in 

JJAS). It is also concluded that during monsoon the minimum temperature does not follow the 

oscillations in maximum temperature which is consistent with Figure 6. 

Figure 7: Average power spectrum of minimum and maximum temperature during MAM, JJAS and NDJF over all 

the years from 2000-2020 with x-axis showing log frequency and y-axis showing power multiplied with frequency. 

The diurnal temperature range is the difference between the maximum and minimum 

temperature within a day. This diurnal range in temperature represents the moisture availability in 

the atmosphere. Figure 8 compares the relation of diurnal temperature range with the maximum 

and minimum temperature of MZI for the three seasons. From the top panel we can see that there 

is a strong linear relationship between the diurnal range in temperature to the maximum 
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temperature during JJAS. That is the moisture availability and the maximum temperature attained 

during a day have a linear relation during the monsoon season. 

Figure 8: Scatter plot of diurnal range of temperature (Maximum-Minimum Temperature) with maximum and 

minimum temperature during MAM, JJAS and NDJF of 2000-2020 over MZI. 

In the NDJF and MAM seasons the linear relationship between the diurnal range of 

temperature is not so prominent because of the spread in the distribution. While considering the 

same in minimum temperature (bottom panel) there is no strong linear relationship between the 

moisture availability and minimum temperature in all the three seasons. It is to be noted that while 

there is a positive slope in the distribution of maximum temperature with respect to diurnal range 

in temperature during all the seasons, there exists a negative slope for the minimum temperature 

during NDJF and MAM. Thus, from the figure we can say that the relation of moisture availability 
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in the atmosphere is different with minimum and maximum temperature, considering the fact that 

both are temperature fields.  

From this study we can say that there is a strong intraseasonal oscillation in maximum 

temperature during all seasons and in minimum temperature during pre-monsoon and winter. It is 

also found that the moisture present in the atmosphere is having a strong linear relation with 

maximum temperature during monsoon. During all other seasons they are not linearly related and 

for minimum temperature no such relation is present during any of the seasons. 

 

9. CONCLUSION 

The accelerating changes in data format, presentation and data analytics have created a 

high demand for the tools and techniques for extracting information from the available data. One 

of the major areas of research that makes use of huge datasets is weather and climate science. 

Understanding the state of the atmosphere and its evolution spatially and temporally forms an 

integral part of predicting the future atmospheric conditions. The availability of efficient analytical 

tools thus forms an essential part in climate research. A variety of tools and techniques are 

available now-a-days for this purpose, in which Python has a significant position. This report deals 

with the usage of Python for accessing and analyzing the major meteorological gridded dataset 

formats. The characteristics of these gridded datasets and the packages and modules in Python for 

supporting the basic analysis of these datasets are described here (See Sect. 2-5). Some example 

Python scripts for reading, sub setting, writing and plotting data are included in Section 7. The 

same scripts are available in the GitHub repository. Some additional GitHub reference pages which 

depict different analytic methods in Python used in multiple Earth Science fields are included in 

the references22,23,24. 

To have some analytical insight using python, a case study is conducted. We analyze the 

Intraseasonal Variability of Minimum and Maximum Temperature over the Monsoon Zone of India 

during pre-monsoon, monsoon and winter seasons using Python as the tool for analysis. The 

analysis brings out the intraseasonal fluctuation in maximum and minimum temperature during 

different seasons. It is shown that, similar to rainfall, the maximum and minimum surface 

temperature shows intraseasonal variability. At times they are similar but at times they differ from 

each other. The physical causality of the intraseasonal oscillation in temperature is not explored, 

although the plots indicate low frequency variability of the intraseasonal oscillations beyond 



36 

weather scale. It would be worthwhile to explore what is the origin of such low frequency 

oscillation in the temperature field outside the monsoon zone (such as extratropical Rossby waves). 

This report discusses the potential application of Python for the operational research in the climate 

and weather sciences. There is immense scope for this fast-developing programming language as 

a tool that can support the rising demands of meteorologists.  
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